skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Stankaitis, Grant"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Respiration rate and heart rate variability (HRV) due to respiratory sinus arrhythmia (RSA) are physiological measurements that can offer useful diagnostics for a variety of medical conditions. This study uses a wrist-worn wearable development platform from Maxim Integrated and Doppler radar sensor developed by Adnoviv, Inc. to non-invasively measure these physiological signals. Six datasets are recorded comprising of five different individuals in varying physical environments breathing at different respiration rates. First, respiration rates are extracted from photoplethysmography (PPG) and accelerometer data and compared to Doppler radar. The average maximum and minimum difference between Doppler radar extracted RR and PPG, HRV RSA, and accelerometer extracted RR is 0.342 b/m and 0.171 b/m, respectively. Then, waveforms for Doppler radar, PPG, and HRV RSA signals are plotted in time domain and an analysis discusses the physical phenomena associated with the phase alignment of the signals. 
    more » « less
  2. Measurement of the body's displacement at multiple positions allows heart pulse wave propagation to be observed; this is an important step toward noncontact blood pressure measurement. This study investigates the feasibility of performing blood pressure measurements using skin displacement waveforms measured at two positions on a human body. To evaluate the accuracy of the proposed approach, this study uses a pair of laser displacement sensors to enable precise pulse transit time measurement. By comparing the displacement waveforms from the two sensors, the relationship between pulse transit time and blood pressure was evaluated. It is demonstrated experimentally that the blood pressure can be estimated with accuracy of 5.1 mmHg, which is equivalent to the error of an ordinary cuff-type blood pressure monitor. 
    more » « less